Heat-induced superaggregation of amphotericin B modifies its interaction with serum proteins and lipoproteins and stimulation of TNF-alpha.
نویسندگان
چکیده
The purpose of the present study was to examine the influence of heat-induced superaggregation of Amphotericin B (AmB) in the Fungizone (FZ) formulation on its interaction with human serum components and relate this to reduced toxicity. Whole serum distribution studies showed that a significantly lower percentage of AmB from HFZ was recovered in the high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglyceride-rich lipoprotein (TRL) fractions and a greater percentage recovered in the lipoprotein-deficient plasma (LPDP), though the majority of both preparations were recovered in LPDP. Circular dichroism (CD) and difference absorption spectroscopy were used to determine the stability of FZ and heat-treated FZ (HFZ) in the presence of HDL, LDL, serum, and albumin. The CD studies indicate that the "core" aggregate of HFZ is more stable in the presence of HDL and LDL, whereas the FZ is less stable and more dynamic with the core aggregate dissociating to a greater extent in the presence of either purified lipoprotein. Absorption studies with whole serum and purified albumin suggest that FZ aggregates are far less stable in the presence of albumin than HFZ and that interaction with serum albumin is a dominant feature for both drug preparations. HFZ also has a different effect on the cytokine response in vitro. Studies using THP-1 human monocytes show that HFZ provokes a smaller release of tumor necrosis factor (TNF)-alpha than FZ. This cytokine may be associated with the unpleasant side effects of AmB. These findings suggest that heat-induced superaggregation of AmB alters its interaction with HDL, LDL, serum proteins, and monocytes, and these findings may be important in explaining the reduced toxicity of the superaggregated form of AmB.
منابع مشابه
Heat-induced superaggregation of amphotericin B attenuates its ability to induce cytokine and chemokine production in the human monocytic cell line THP-1.
The cytokine and chemokine response elicited by heat-treated amphotericin B (HT-AmB) was compared with that of untreated amphotericin B (AmB-DOC) in the human monocyte cell line THP-1. AmB-DOC produced dose-dependent increases in interleukin (IL)-1beta, IL-1alpha, tumour necrosis factor-alpha, macrophage inflammatory protein (MIP)-1alpha and MIP-1beta at 2 h. HT-AmB induced cytokine and chemoki...
متن کاملActivity of a heat-induced reformulation of amphotericin B deoxycholate (fungizone) against Leishmania donovani.
The heat treatment of amphotericin B deoxycholate (Fungizone), which was previously shown to induce superaggregation and decrease the toxicity of the drug to mammalian cells, increased its activity against Leishmania donovani in BALB/c mice, whereas it reduced its toxicity. Heat treatment preserved the activity of Fungizone against L. donovani HU3-infected mouse peritoneal macrophages.
متن کاملHeat-induced superaggregation of amphotericin B reduces its in vitro toxicity: a new way to improve its therapeutic index.
Superaggregation of amphotericin B (AmB) was previously shown to occur upon heating of solutions at 70 degrees C. In the present study, we demonstrate that heat pretreatment of Fungizone (deoxycholate salt of AmB [AmB-DOC]) solutions induces a drastic decrease in the in vitro toxicity of this antibiotic. Heated AmB-DOC colloidal solutions, which mainly contained superaggregated and monomeric fo...
متن کاملLong-Term Treatment by Vitamin B1 and Reduction of Serum Proinflammatory Cytokines, Hyperalgesia, and Paw Edema in Adjuvant-Induced Arthritis
Introduction: Immune system is involved in the etiology and pathophysiology of inflammation and vitamins are important sources of substances inducing nonspecific immunomodulatory effects. Given the proinflammatory role of cytokines in the inflammation and pain induction, this study aimed to assess the effects of long-term administration of vitamin B1 on the proinflammatory cytokines, edema, and...
متن کاملLipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus.
Inflammation is a hallmark of brucellosis. Although Brucella abortus, one of the disease's etiologic agents, possesses cytokine-stimulatory properties, the mechanism by which this bacterium triggers a proinflammatory response is not known. We examined the mechanism whereby heat-killed B. abortus (HKBA), as well as its LPS, induces production of inflammatory cytokines in monocytes/macrophages. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of pharmaceutical sciences
دوره 90 2 شماره
صفحات -
تاریخ انتشار 2001